HuggingFaceDatasets
Documentation for HuggingFaceDatasets.
HuggingFaceDatasets.jl is a non-official julia wrapper around the python package datasets
from Hugging Face. datasets
contains a large collection of machine learning datasets (see here for a list) that this package makes available to the julia ecosystem.
This package is built on top of PythonCall.jl.
Installation
HuggingFaceDatasets.jl is a registered Julia package. You can easily install it through the package manager:
pkg> add HuggingFaceDatasets
Usage
HuggingFaceDatasets.jl provides wrappers around types from the datasets
python package (e.g. Dataset
and DatasetDict
) along with a few related methods.
Check out the examples/
folder for usage examples.
julia> train_data = load_dataset("mnist", split = "train")
Dataset(<py Dataset({
features: ['image', 'label'],
num_rows: 60000
})>, identity)
# Indexing starts with 1.
# By defaul, python types are returned.
julia> train_data[1]
Python dict: {'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x2B64E2E90>, 'label': 5}
julia> set_format!(train_data, "julia")
Dataset(<py Dataset({
features: ['image', 'label'],
num_rows: 60000
})>, HuggingFaceDatasets.py2jl)
# Now we have julia types
julia> train_data[1]
Dict{String, Any} with 2 entries:
"label" => 5
"image" => UInt8[0x00 0x00 … 0x00 0x00; 0x00 0x00 … 0x00 0x00; … ; 0x00 0x00 … 0x00 0x00; 0x00 0x00 … 0x00 0x00]